20 research outputs found

    Dynamics of wheat organs by close-range multimodal machine vision

    Full text link

    Wheat Ear Segmentation Based on a Multisensor System and Superpixel Classification

    Full text link
    The automatic segmentation of ears in wheat canopy images is an important step to measure ear density or extract relevant plant traits separately for the different organs. Recent deep learning algorithms appear as promising tools to accurately detect ears in a wide diversity of conditions. However, they remain complicated to implement and necessitate a huge training database. This paper is aimed at proposing an easy and quick to train and robust alternative to segment wheat ears from heading to maturity growth stage. The tested method was based on superpixel classification exploiting features from RGB and multispectral cameras. Three classifiers were trained with wheat images acquired from heading to maturity on two cultivars at different levels of fertilizer. The best classifier, the support vector machine (SVM), yielded satisfactory segmentation and reached 94% accuracy. However, the segmentation at the pixel level could not be assessed only by the superpixel classification accuracy. For this reason, a second assessment method was proposed to consider the entire process. A simple graphical tool was developed to annotate pixels. The strategy was to annotate a few pixels per image to be able to quickly annotate the entire image set, and thus account for very diverse conditions. Results showed a lesser segmentation score (F1-score) for the heading and flowering stages and for the zero nitrogen input object. The methodology appeared appropriate for further work on the growth dynamics of the different wheat organs and in the frame of other segmentation challenges

    Global Wheat Head Detection 2021: an improved dataset for benchmarking wheat head detection methods

    Get PDF
    The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version

    In-Field Wheat Reflectance: How to Reach the Organ Scale?

    Full text link
    The reflectance of wheat crops provides information on their architecture or physiology. However, the methods currently used for close-range reflectance computation do not allow for the separation of the wheat canopy organs: the leaves and the ears. This study details a method to achieve high-throughput measurements of wheat reflectance at the organ scale. A nadir multispectral camera array and an incident light spectrometer were used to compute bi-directional reflectance factor (BRF) maps. Image thresholding and deep learning ear detection allowed for the segmentation of the ears and the leaves in the maps. The results showed that the BRF measured on reference targets was constant throughout the day but varied with the acquisition date. The wheat organ BRF was constant throughout the day in very cloudy conditions and with high sun altitudes but showed gradual variations in the morning under sunny or partially cloudy sky. As a consequence, measurements should be performed close to solar noon and the reference panel should be captured at the beginning and end of each field trip to correct the BRF. The method, with such precautions, was tested all throughout the wheat growing season on two varieties and various canopy architectures generated by a fertilization gradient. The method yielded consistent reflectance dynamics in all scenarios

    Registration and fusion of close-range multimodal wheat images in field conditions

    Full text link
    Multimodal images fusion has the potential to enrich the information gathered by multisensor plant phenotyping platforms. Fusion of images from multiple sources is, however, hampered by the technical lock of image registration. The aim of this paper is to provide a solution to the registration and fusion of multimodal wheat images in field conditions and at close range. Eight registration methods were tested on nadir wheat images acquired by a pair of red, green and blue (RGB) cameras, a thermal camera and a multispectral camera array. The most accurate method, relying on a local transformation, aligned the images with an average error of 2 mm but was not reliable for thermal images. More generally, the suggested registration method and the preprocesses necessary before fusion (plant mask erosion, pixel intensity averaging) would depend on the application. As a consequence, the main output of this study was to identify four registration-fusion strategies: (i) the REAL-TIME strategy solely based on the cameras’ positions, (ii) the FAST strategy suitable for all types of images tested, (iii) and (iv) the ACCURATE and HIGHLY ACCURATE strategies handling local distortion but unable to deal with images of very different natures. These suggestions are, however, limited to the methods compared in this study. Further research should investigate how recent cutting-edge registration methods would perform on the specific case of wheat canopy
    corecore